# 21ELCT362 MICRO-PROPAGATION TECHNOLOGIES

Hours Per Week:

| L | Т | Р | С |
|---|---|---|---|
| 1 | 1 | 4 | 3 |

Total Hours:

| L  | Т | Р  |
|----|---|----|
| 15 |   | 60 |

# **COURSE DESCRIPTION AND OBJECTIVES:**

Main objective is to learn about the tissue culture and micro propagation technology

# **COURSE OUTCOMES:**

Upon completion of the course, the student will be able to achieve the following outcomes:

| COs | Course Outcomes                                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Students will be aware about types of cultures (seed, embryo, organ, callus and cell)                                                       |
| 2   | Students will be aware about stages of micro propagation, axillary bud proliferation                                                        |
| 3   | Students will understand the concept of organogenesis (callus and direct organ formation), somatic embryogenesis, cell suspension cultures. |

# **SKILLS:**

- ✓ Depth understanding of in-vitro propagation techniques
- √ Preparation of standard medium
- ✓ Preparation of standard solution of growth regulators
- ✓ Expertise in different sterilization techniques
- ✓ Handling of equipment used in micro-propagation techniques



Source: https://www.mdpi.com2223-7747104630

### **ACTIVITIES:**

- o Visit tissue culture laboratory
- o Conduct experiment on Organogenesis
- o Experimentation on determining optimum concentration of growth regulators
- o Experiments of synthetic seeds production and testing storability and germination efficiency

#### UNIT - 1

Meaning and concept of *in vitro* culture and micro-propagation; Historical mile stones, advances and future prospects; totipotency, dedifferentiation

#### UNIT - 2

Tissue culture methodology: Sterile techniques, synthetic and natural media components, growth regulators, environmental requirement, genetic control of regeneration

#### UNIT - 3

Plant regeneration pathways - Organogenesis and Somatic embryogenesis; Micro-propagation – Definition, methods, and stages and significance; Axillary bud proliferation approach – Shoot tip and meristem culture

#### **UNIT - 4**

Organogenesis - Purpose, methods and requirements, indirect and direct organogenesis; Somatic embryogenesis - Procedures and requirements, indirect and direct embryogenesis; Differences between somatic and gametic embryogenesis

#### UNIT - 5

Synthetic seed - Concepts, necessity, procedure and requirements for production of synthetic seeds

# LABORATORY EXPERIMENTS

#### LIST OF EXPERIMENTS

- 1-2 Organization of tissue culture laboratory
- 3-4 Sterilization techniques used in tissue culture Glass, plastic and metalware
- 5-6. Study and use of laminar flow unit for tissue culture
- 7-8. Study and use of autoclaves for tissue culture
- 9-10. Preparation of stock and working solutions of Tissue culture media
- 11-12. Sterilization techniques used in tissue culture Media, hormones and other thermolabile compounds (Filter sterilization)
- 13-14.Preparation and inoculation of explants for Direct organogenesis shoot tip , nodal Explants
- 15-16. Preparation and inoculation of explants for callus production Leaf, stem and root explants.
- 17-18.Determination of optimum concentration of hormones / growth regulators for direct organogenesis Shoots
- 19-20.Determination of optimum concentration of hormones / growth regulators for direct organogenesis Roots
- 21-22. Sub culturing for multiple shoots and calli produced in vitro
- 23-24. Determination of optimum concentration of auxins to generate shoots from *in vitro* generated calli
- 25-26. Production of somatic embryos in vitro in carrot

27-28. Identification of different stages / phases of somatic embryos

- 29. Preparation of synthetic seeds from somatic embryos
- 30. Storage and germination of synthetic seeds

# **REFERENCES:**

1. Gamborg, O.L. and Phillips, G.C. 1995. *Plant Cell Tissue Organ Culture : Fundamental Methods*. Springer, Berlin

- 2. Keshavachandran, R. and Peter, K.V. 2008. *Pant Biotechnology: Methods in Tissue Culture and Gene Transfer*. Universities Press, Hyderabad
- 3. Smith, R.H., 2013. *Plant Tissue Culture : Techniques and Experiments*. 3<sup>rd</sup> ed. Academic Press, San Diego, CA, USA
- Bhojwani, S.S. and Razdan, M.K. 1996. Plant Tissue Culture, Theory and Practice. Elsevier, Netherlands
- 5. Bhojwani, S.S. and Dantu, P.K. 2013. *Pant Tissue Culture: An Introductory Text*. Springer, India, New Delhi