21CPHY162 FUNDAMENTALS OF CROP PHYSIOLOGY

Hours Per Week:

L	Т	Р	С
2	-	2	3

Total Hours:

L	Т	Р
30	-	30

Course Description and Objectives:

This course provides students to the basic concepts and underlying principles of crop growth and development

Course Outcomes:

Upon completion of the course, the student will be able to achieve the following outcomes:

COs	Course Outcomes	
1	Acquaint with basic knowledge on various physiological aspects of growth and development including photosynthesis, mineral nutrition, flowering and senescence	
2	Understand functions and process related to uptake, assimilation and deficiency symptoms of nutrients and their impact and growth and productivity of plants	
3	Gain knowledge about Glycolysis and TCA cycle	

SKILLS:

- ✓ Analyse effect of nutrients on plant growth
- ✓ Identify and differentiate nutrient deficiency symptoms and suggest control measures
- ✓ Record data regarding physiological parameters of crop plants

Source:

https://en.wikipedia.org/wiki/ Plant_physiology#/media/ File:Plant_physiology.png

ACTIVITIES:

- o Preparation of solutions in different concentrations
- o Conduct seed viability and vigor tests
- o Demonstrate Leaf anatomy of C3 and C4 plants
- o Experiment on effect of plant growth regulators on plant growth
- Measurement of photosynthesis by IRGA

UNIT - 1

Introduction: Crop physiology and its importance in Agriculture; Plant cell: an Overview; Seed physiology: seed structures, seed development, viability and vigour, Physiological maturity, seed germination

UNIT - 2

Physiological aspects of growth and development: Growth analysis. Diffusion and osmosis; Absorption of water, Ascent of sap, Water Potential, Uptake of water, transpiration and Stomatal complex; Water use efficiency, Overall view of solute transport, Mineral nutrition of Plants: Essential mineral elements, functions, deficiency and toxicity symptoms, nutrient uptake mechanisms; assimilation of mineral nutrients: nitrate, ammonia, sulphur- Hydroponics, Aeroponics - Biological nitrogen fixation

UNIT - 3

Photosynthesis:Leaf pigments, PAR, Light and Dark reactions, C3, C4 and CAM types of C assimilation, Photorespiration, Photosynthetic efficiency and Crop productivity, Source - Sink relationship; Respiration: energy balance, OPPP pathway, significance.Growth and Maintenance Respiration; Lipids: Biosynthesis and functions, Glyoxylate pathway, significance in plant metabolism

UNIT - 4

Physiology of flowering:Vegetative to reproductive transition, Photoperiodism, importance, classification of plants based on photoperiodism, Phytochrome, Vernalization importance. Biological clocks and Circadian rhythms. Plant growth regulators: Promoters, Inhibitors and Retardants, biosynthesis, occurrence, transport, Mode of action, Physiological roles and commercial uses in agriculture

UNIT-5

Senescence and abscission: definition, types, changes that occur during senescence, Process of abscission, abscission versus senescence. Role of nutrition, PGRs and stress in senescence and abscission, Post harvest physiology: dormancy, fruit ripening, physiology of cut flowers, applied aspects

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS

- 1. Preparation of Solutions
- 2. Seed vigour and viability tests
- 3. Optimum conditions for seed germination
- 4. Leaf area measurement
- 5. Growth analysis of crops
- 6. Measurement of water status in plants
- 7. Measurement of plant water potential
- 8. Measurement of stomatal frequency, index and aperture
- 9. Absorption spectrum of chlorophyll
- 10. Leaf anatomy of C3 and C4 plants
- 11. Measurement of photosynthesis by Hill's reaction
- 12. Measurement of photosynthesis by IRGA
- 13. Effect of plant growth regulatorson modulation of Plant growth
- 14. Effect of ABA on regulation of stomatal movement
- 15. Diagnosis of nutrient deficiency symptoms in crops; Yield and yield structure analysis

REFERENCES:

- Taiz, L. and Zeiger, E. 2010. Plant Physiology 5th edition, Sinauer Associates, Sunderland, MA, USA
- 2. Gardner, F.P., Pearce, R.B., and Mitchell, R.L. 1985. *Physiology of Crop Plants*. Scientific Publishers, Jodhpur
- 3. Noggle, G.R. and Fritz, G.J., 1983. *Introductory Plant Physiology*. 2nd Edition. Prentice Hall Publishers, New Jersey, USA