19BT211 GENETICS

Hours Per Week:

L	Т	Р	С
3	-	2	4

Total Hours:

L	Т	Р
45	-	30

WA/RA	SSH/HSH	cs	SA	S	BS
10	45	1	10	2	2

COURSE DESCRIPTION AND OBJECTIVES:

The course provides knowledge in genetics and equip students understand the genetic basis of diseases and prevention. It also enables students to understand molecular mechanisms through which genes cause diseases.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

COs	Course Outcomes	POs
1	Accomplish the genetic basis of heredity by linkage mapping.	4,9
2	Attain knowledge on organization and packing of chromosome and its functions.	4,5,9
3	Enable to understand the structure of DNA, mutations and cloning strategy.	5,6,8,9
4	Comprehend the basics of population genetics and epigenetics.	4,7

SKILLS:

- ✓ Solve genetic problems related to Mendelian laws of inheritance.
- ✓ Mapping of chromosomes.
- ✓ Experimental methods to prove the DNA as a genetic material.
- ✓ Karyotype in human chromosomes.

VFSTR 65

UNIT - I L-9

PHYSICAL BASIS OF HEREDITY: Historical perspectives of genetics; Mendelian laws/Basic laws of inheritance - monohybrid, dihybrid and trihybrid cross; Modification of Mendel's ratios due to gene interactions; Multiple alleles and lethality; Multiple factors of inheritance; Probability in Mendelian inheritance; Genotyping by molecular markers and the concept of linkage, crossing over and gene mapping.

UNIT - II L-9

GENETIC MATERIAL AND ITS ORGANIZATION: Identification of the genetic material; Classical experiments - Hershey-Chase, Avery-MacLeod-McCarty and Meselson-Stahl; Packing and organization of genetic material in prokaryotes and eukaryotes; Chromosome morphology, Classification and karyotyping; Special chromosomes.

UNIT - III L-9

BACTERIAL GENETICS AND EXTRA CHROMOSOMAL INHERITANCE: Conjugation, Transformation and transduction; Introduction of DNA into the bacterial cells; Cloning in *E.Coli*; Gene transfer to animal and plant cells; DNA mediated transformation; Phages as genetic material and their life cycles; Retroviruses, Influenza; Extra chromosomal inheritance.

UNIT - IV

GENE STRUCTURE AND MUTATIONS: Spontaneous and induced mutations and types of mutations; Chromosomal aberrations; Molecular basis of genetic diseases and applications; Fine structure of genes in prokaryotes and eukaryotes; Genetic control of development in *Drosophila* and *C.elegans*.

UNIT - V L-9

CONCEPTS OF HUMAN GENETICS: Introduction - population genetics and epigenetics; Human chromosomes and chromosome variation in number; Mechanisms of sex determination and differentiation.

TEXT BOOK:

1. P.K. Gupta, "Genetics", 3rd edition, Rastogi Publications, 2005.

REFERENCE BOOKS:

- E. J. Gardner, M.J. Simmons and D. P. Snustad, "Principles of Genetics", 8th edition, Wiley India, 2007.
- M.W. Strickberger, "Genetics", 3rd edition, Prentice Hall of India Publications, 2006.

VFSTR 66