17CS014 COMPUTER VISION

L	Т	Р	С
3	1	-	4

Course description and objectives:

To introduce the fundamentals of image formation; Linear filtering methods, Edge detection and Segmentation based on Color and Texture and to provide the student with programming experience from implementing computer vision and object recognition applications in MATLAB.

Course Outcomes:

The Student will be able to:

- ✓ Understand the basic concepts of Camera and Projection system.
- ✓ Describe known techniques of Filters and edge detection Techniques.
- ✓ Understand the various Segmentation Techniques based on Color, Texture.
- ✓ Understand the design of a computer vision system for a specific problem learn how to apply their theoretical knowledge in practice.

Skills:

- ✓ Learn about various linear filters.
- ✓ Analyze various Edge detection Methods
- ✓ Analyze the various Segmentation techniques for specific applications.
- ✓ Study and implement of various Computer Vision Case studies

Activities:

- \checkmark Design the smoothing filter with a Gaussian function.
- ✓ Implement using the Laplacian to detect edges.
- ✓ Design &Implement shot boundary detection.
- ✓ Implement segmentation using simple clustering methods.
- ✓ Implementation of the EM algorithm .
- ✓ Implement the linear filter response to additive Gaussian noise
- ✓ Implement the inverse Fourier transforms.

Unit – I

IMAGE FORAMTION AND IMAGE MODELS: CAMERA-pinhole cameras, camera with lenses, the human eye, sensing, geometric camera models-elements of analytical Euclidean geometry, camera parameters and the perspective projection, affine cameras and affine projection equations, color-human color perception, representing color, a model for image color.

Unit – II

FILTERING TECHNIQUES: linear filters-Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as templates, technique: normalized correlation and finding patterns, technique: scale and image pyramids.

Unit – III

EDGE DETECTION and TEXTURE: Noise- estimating derivatives, detecting edges, Texture-representing texture, analysis using oriented pyramids, application, shape from texture.

Unit – IV

SEGMENTATION: Segmentation by clustering-what is segmentation, human vision, applications, image segmentation by clustering pixels, segmentation by graph, segmentation by fitting a model-Hough transforms, missing data problems fitting and segmentation, the EM algorithm in practice.

Unit – V

APPLICATIONS: finding in digital libraries-organizing collection of information, summary representations of the whole picture, representing parts of picture, image based rendering-3d models from image sequences, transfer based approaches, the light filed

TEXT BOOKS:

1. Computer Vision – A Modern Approach, by D.Forsyth and J.Ponce hall Robot Vision, by B.K.P.Horn, McGraw-Hill.

REFERENCE BOOKS:

- 1. Computer Vision: Algorithms and applications, Richard Szeliksy.
- 2. computer &robot vision, Haralick & shaprio, vol ii.
- 3. Emerging Topics in Computer Vision ,GeradMedioni and sing bing kang.