EC-509 - DIGITAL SYSTEM DESIGN

L T P To C 3 1 - 4 4

Course Objectives:

- · To learn about HDL
- Acquire the knowledge of designing sequential machines using ASM
- · Asynchronous sequential machine design, races and hazards
- · Synchronous design using PLD'S and GAL'S

Course Learning Outcomes:

- · Able to use HDL for digital design
- Easily design involving synchronous/ asynchronous machine without hazards and races.
- Two level implementation of digital logic using PLD'S, GAL'S and FPGA.

UNIT - I (12 hours)

VHDL

Design Flow, Program structure, Types and Constants, Structural Design Elements, Dataflow Design Elements, Behavioral Design Elements, Functions and Procedures, Libraries and Packages.

UNIT - II (10 hours)

Design of Digital systems

ASM charts, Hardware description language and control sequence methods, Reduction of state tables, state assignments. Sequential circuit design: design of iterative circuits, design of sequential circuits using ROMs and PLAs, sequential circuit design using CPLD, FPGAs.

UNIT - III (9 hours)

Asynchronous sequential machine

Fundamental mode model, flow table, state reduction, minimal closed covers, races, cycles and hazards.

UNIT - IV (10 hours)

Programmable logic

ROM, PLA, PAL, PLD, PGA – Features, programming and applications using complex programmable logic devices Altera series – Max 5000/7000 series and Altera FLEX logic – 10000 series CPLD, AMD's – CPLD (Mach 1 to 5); Cypres FLASH 370 Device Technology, Lattice pLSI's Architectures – 3000 Series – Speed Performance and in system programmability.

UNIT - V (9 hours)

FPGAs

Field Programmable Gate Arrays – Logic blocks, routing architecture, Design flow, Technology Mapping jfor FPGAs, Case studies – Xilinx XC4000 & ALTERA'S FLEX 8000/10000 FPGAs: AT & T –ORCA'S (Optimized Reconfigurable Cell Array): ACTEL'S – ACT-1,2,3 and their speed performance

TEXT BOOKS:

1.John F Wakerly, "Digital Design Principles and Practices", Pearson Education, 2002

2. Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.

REFERENCES:

- John M Yarbrough, "Digital Logic applications and Design", Thomson Learning. 2001
- 2. Nripendra N Biswas, "Logic Design Theory", Prentice Hall of India, 2001
- Charles H. Roth Jr., "Fundamentals of Logic design", Thomson Learning, 2004.
- 4. P.K.Chan & S. Mourad, "Digital Design Using Field Programmable Gate Array", jPrentice Hall (Pte), 1994.
- S.Trimberger, Edr., "Field Programmable Gate Array Technology", Kluwer Academic Publicatgions, 1994.
- J. Old Field, R.Dorf, "Field Programmable Gate Arrays", John Wiley & Sons, Newyork, 1995.
- S.Brown, R.Francis, J.Rose, Z.Vransic, "Field Programmable GateArray", Kluwer Pubin, 1992