

16EE208 ANALOG ELECTRONICS

Hours Per Week :									
L	Т	Р	С						
3	-	2	4						

L	Т	Р	WA/RA	SSH/HSH	CS	SA	S	BS
45	-	30	5	40	1	8	5	1

Course Description and Objectives:

This course is an extension of electronic devices and circuit theory and deals with feedback amplifiers, oscillators, multistage amplifiers, OP-amps, ADC, DAC, 555 timers and PLL. The objective of the course is to design simple circuits using these devices.

Course Outcomes:

The student will be able to:

- understand and analyze the working of feedback amplifiers.
- understand and analyze the working of high frequency multistage amplifiers.
- design of simple electronics circuits by OP-amps.
- understand the applications of 555 timer.

SKILLS:

- ✓ Analyze the operation of transistor based multistage and feedback amplifiers.
- Design and simulate amplifier circuits using multisim.
- ✓ Design and analysis of OP-amp based function generator.
- ✓ Realization of multivibrator circuits using 555 timer.
- ✓ Data acquisition using ADC and DAC.

I -10

L-8

L-9

1-9

1-9

Total hours: 30

UNIT – 1

FEEDBACK AMPLIFIERS: Concept and types of feedback amplifiers, Effects of feedbacks, Different topologies of feedback amplifiers and their analysis.

OSCILLATORS: Barkhausen's crieterion for oscillations, Frequency of oscillation for hartley, Colpitts, RC phase shift, Weinbridge and crystal oscillators.

UNIT – 2

HIGH FREQUENCY TRANSISTOR AMPLIFIER CIRCUITS: High frequency model of transistor and its cut-off frequencies, Single stage and multistage amplifiers at high frequencies, Calculation of gain and bandwidth for single and multistage amplifiers.

UNIT - 3

OP-AMP AND ITS APPLICATIONS: Introduction to integrated circuits, Basic information of Op-amp, Ideal and practical Op-amp, Internal circuit, DC and AC characteristics of Op-amp, Modes of operation - Inverting, Non-inverting and differential; Basic application of Op-amp - V to I and I to V converters, Sample and hold circuits, Multipliers, Dividers, Comparators, Differentiators and integrators.

UNIT – 4

555 TIMER: Introduction to 555 timer and its functional diagram; Applications of 555 timer - Schmitt Trigger, Monostable and astable multivibrators, Frequency divider, Linear ramp generator and symmetrical square wave generator.

PHASE LOCKED LOOPS: Introduction to PLL, Principles and description of individual blocks of 565; Applications of PLL - Frequency multiplier and frequency synthesizer.

UNIT – 5

D/A AND A/D CONVERTERS : Introduction to D/A and A/D converters, Basic DAC techniques - Weighted resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, and IC1408 DAC; Different types of ADCs - Parallel comparator type ADC, Counter type ADC, Successive approximation ADC and dual slope ADC; DAC and ADC specifications.

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS

- 1. Design of oscillator circuits.
- 2. Non-linear wave shaping clippers.
- 3. Non-linear wave shaping clampers.
- 4. Schmitt trigger using 555 timer.
- 5. Design of astable multivibrator using 555 timer.
- 6. Design of monostable multivibrator using 555 timer.
- 7. Design of basic arithmetic circuits such as adder and subtractor.
- 8. Design of Integrator and differentiator.
- 9. Design of voltage comparators using OP-Amp.
- 10. Digital to analog converter (R-2R ladder).
- 11. Design of parallel comparator type ADC.

TEXT BOOKS :

- 1. J. Millman and C.C.Halkias, "Electronic Devices and Circuits", 9th edition, Tata Mc-Graw Hill, 2012.
- D. Roy Chowdhury, "Linear Integrated Circuits", 3rd edition, New Age International (P) Ltd, 2010.

REFERENCE BOOKS:

- 1. David A. Bell, "Solid State Pulse circuits", 5th edition, Prentice Hall of India, 2011.
- Ramakanth A. Gayakwad, "Op-Amps and Linear ICs", 5th edition, Prentice Hall of India, 2011.
 R.L.Boylestad and Lovis Nashelsky, "Electronic Devices and Circuits Theory", 10th edition, Pearson Education, 2010.

ACTIVITIES:

- Design of colpitts oscillator for a specific frequency.
- Design of Hartley oscillator for a specific frequency.
- Design of OPamp based square wave generator.
- Design of pulse generator for triggering SCR.
- Design of basic arithmetic based circuits such as adder and subtractor.
- Design of Integrator and differentiator.